
ESAM 449 - Homework 4

Philip Moseley

December 4, 2009

1 Overview

A level-set based image segmentation method based on the paper “Level Set Evolution Without
Re-initialization: A New Variational Formulation” has been implemented. The method eliminates
the need for reinitialization by adding energy terms which force the level set to remain close to a
signed distance function. The evolution equation is given by

∂φ

∂τ
= µ

[
∇2φ− κ

]
+ λδε(φ)∇ · (gn) + νgδε(φ) (1.1)

where µ, λ, and ν are user-defined parameters. The µ term is an internal energy term that depends
only on φ and penalizes the level set when it deviates from a signed distance function. The λ and
ν terms are external energy terms that drive the motion of the level set towards the desired image
features. Here g is an edge indicator function given by

g =
1

1 + |∇Gσ ∗ I|2
(1.2)

where Gσ is the Gaussian kernel and I is the image data, and δε is a smoothed dirac delta function

δε(x) =

{
0 |x| > ε
1
2ε

[
1 + cos

(
πx
ε

)]
|x| ≤ ε

(1.3)

Two solution methods for this system of equations are compared. In the explicit solution time
is discretized using the forward Euler method and solving for the next time step φn+1,

φn+1 = φn + ∆τ
(
µ
[
∇2φ− κ

]
+ λδε(φ)∇ · (gn) + νgδε(φ)

)
(1.4)

The semi-implicit solution method is more complicated. The discretized equation is

φn+1 − φn

∆τ
= µ∇2φn+1 − µκm + λδε(φn)∇ · (gnn) + νgδε(φn) (1.5)

which can be rewritten as
1

∆τµ
φn+1 −∇2φn+1 =

1
∆τµ

φn − κn +
1
µ

[λδε(φn)∇ · (gnn) + νgδε(φn)] (1.6)

This is the form of a Helmholtz equation. Rather than write a custom solver to solve this system
of equations, we use Intel’s Math Kernel library Helmholtz solver in two dimensions. Spatial
derivatives for both the explicit and the implicit method are solved using central differences.

1

2 Solutions

A simple image with sharp edges is solved in Figure (1). The initial level set is a rectangle near the
edges of the image, and in shrinks inwards with each iteration.

(a) 500 steps with λ=5.0, ν=7.0,
∆τ=6.0, µ=0.04

(b) 100 steps with λ=5.0, ν=9.0,
∆τ=50.0, µ=0.01

Figure 1: Partially resolved zero-contours are shown in blue, final contour shown in red. Left image
is explicit solutions, right image is implicit solutions.

An image with a complex contour is shown in Figure (2). Final solutions are very similar, but
the semi-implicit solution is a little less accurate because a much larger time step was used to solve
the problem faster.

(a) 750 steps with λ=5.0, ν=5.0,
∆τ=6.0, µ=0.04

(b) 300 steps with λ=5.0, ν=4.0,
∆τ=40.0, µ=0.01

Figure 2: Partially resolved zero-contours are shown in blue, final contour shown in red. Left image
is explicit solutions, right image is implicit solutions.

2

Solutions for a test image with 3 separate objects is shown in Figure (3). Final zero contours
(shown in red) are very similar for both methods, but the semi-implicit method was stable for a
much broader range of input parameters. The semi-implicit solution may be slightly less accurate,
but the simulation runs nearly 5 times faster.

(a) 1250 steps with λ=5.0, ν=3.0,
∆τ=5.0, µ=0.04

(b) 250 steps with λ=5.0, ν=3.0,
∆τ=40.0, µ=0.01

Figure 3: Partially resolved zero-contours are shown in blue, final contour shown in red. Left image
is explicit solutions, right image is implicit solutions.

A more realistic application of the method is shown in Figure (4). Varying the parameters
allows the method to capture different aspects of the image. The semi-implicit method still allows
for a dramatically larger timestep, greatly reducing solution time.

(a) 750 steps with λ=5.0, ν=3.0,
∆τ=5.0, µ=0.04

(b) 250 steps with λ=5.0, ν=3.0,
∆τ=40.0, µ=0.01

Figure 4: Partially resolved zero-contours are shown in blue, final contour shown in red. Left image
is explicit solutions, right image is implicit solutions.

3

3 Conclusions

The explicit and semi-implicit methods produces very similar results, but the semi-implicit scheme
has a significantly broader range of stable input parameters. The semi-implicit method was able to
run stably with a ∆τ of 60.0 for some problems, while the explicit method never ran stably with
∆τ above 10.0. Larger time steps allowed the semi-implicit simulations to complete in a fraction of
the time.

Programming effort for the semi-implicit method was minimal. Intel’s Math Kernel library
contains an efficient Helmholtz solver which was easily integrated into my C++ code.

4

